This is going to be a little different than only a usual book review; in fact, it's going to be a review of three books (that were part of a series). They are Peter Shirley's Ray Tracing mini-books. If you've been following my blog for the past few entires you may of noticed that I've been on a bit of a Nim binge lately. I've only been at it for about two months. So in an effort to learn the language better and to go through the books at the same time, I decided to write the book's code in Nim instead of the original C++. It turned out to be smoother than expected (though with some troubles along the way).
What is Nim?
I first heard about this language from the /r/programming subreddit. Every few weeks or so I'd see a link entitled "Nim v0.x.x released," or something like that. I didn't take a look into it until I saw a few of those and said to myself, "Alright, I think it's time to actually take a look at it." Since then, I've been doing most of my free time stuff in Nim.
The best tl;dr I can make to describe Nim would be "It's a python-ish language that compiles down to C/C++." There's definitely a lot more to Nim than just that. Reading from the project site is what really piqued my interests other than the native backend and syntax. There are features that give you a lot of control over the language. For example, you can use constructs such as macros and templates to define your own extensions to the language. One of it's most powerful aspects is how easy it can talk to C/C++ because well, Nim turns into that at the end of the day. Nim is able to take advantage of most of the existing C/C++ libraries with minimal effort. There already exist bindings for things like OpenGL and libSDL. There's even a framework to do web programming too.
I've seen a fair bit of comparisons with Mozilla's Rust and Google's Go, but I don't want to talk about that. The community is not crazy active like many other languages; it's more cozy if anything. Keep in mind that Nim is still very young, yet it's highly impressive what they've been able to do without any massive corporate backing. Yet.
Finding a Ray Tracing Book
In my last semester of university I took a grad level course in Global Illumination. With the Ray Tracer that I made, I wasn't too happy with the final results. I wanted to give it a second shot. So I headed to Amazon to look for a book. Yes, yes... I know there is a lot of good information out there already free on the Internet, but for some reason I just seem to learn better from reading in a book format. Anyways...
I saw a book called "Ray Tracing in one Weekend," at the top of the search. It caught my eye because:
- It was short
- It was inexpensive, three bucks (that's less than a cup of coffee)
- The code was in C++, and OS independant
- It mad the promise of building a functional Ray Tracer
- It came in a three part series. If I didin't like the first one, I could always ditch the second two books to find something else
I was sold.
Book 1 - Ray Tracing in One Weekend
At the beginning of the book you will first have to set up your rendering infrastructure. All of the code makes no use of external libraries (except for one in the second book). That means having to build a 3D vector class, Rays, and other geometric goodies. Nim does come with it's own built-in 3D vector object, but I decided to forego using it so I could get the "full experience."
Now you might be saying "So how did you save renders then?" PPM. On standard out. Yeah, it's not my favourite image format either, but it got the job done and it is probably the simplest format to export without any extra libraries. And if you have a tool like ImageMagick converting it to something that people actually care about (e.g. PNG,) is trivial.
What's really nice about this book is how the author goes through step by step with you to build each component one at a time. I've had one too many tech books that I've slapped down $50 (or more) to only give me half-assed partial snippets and no walkthrough. Peter Shirley did a very good job of avoiding that. The code in this book had very few errors to none at all; a very great thing. With the amount of code in the book, I'd say you should be able to go through it in about three to six hours time.
I really wish I read this book before taking my course in Global Illumination. It would have made my life much easier and saved me a load of time and frustration.
Book 2 - Ray Tracing: the Next Week
This is the book in the series that I learned the most from, but it is also the one that cost me the most agony and time.
A lot of that could contribute to the fact that I was porting the code to a language that I was new to, but this book did have it's share of errors and missteps. For example, there were a few times where Shirley forgot to mention to make a change to something; one of the things that drives me up the wall when reading a tech book. Despite all of this I was able to get through the book, but it took way more than a week (the titled lied to me,) and I had to manually trace things through in the original C++ repo more than I should have.
Annoyances aside, this book goes over things like texture mapping (on spheres only), perlin noise, interpolation, BVH trees, and other stuff. What's more exciting is that actual emissive lights get introduced. In the first book there wasn't really any lighting, it was all ambient and sun-like. Now, we had real lamps. There are also a lot more scenes constructed in this book than the last. Including that famous Cornell Box. There is an external library introduced, but luckily it's stb_image.h
; one of those magical single header file libraries. Binding it to Nim was a sinch.
I'd only recommend reading this book if you really are interested in Ray Tracing beyond what was presented in the first.
Book 3 - Ray Tracing: The Rest Of Your Life
This one ended up being a lot more math and theory based, as you refactor the Ray Tracer into a Monte Carlo one. And... that's really much it. Every single scene that is rendered is based around the Cornell Box. It would have been nice to have a little more diversity rather than replacing a box with a glass sphere or making one a mirror-like surface, but it doesn't take away from what's talked about.
What's really nice about this one is that it was a much quicker read for me than the second, less frustrating, the images rendered way faster, and ended up looking much better to boot. There was only one problem; in the final chapter the author did that thing again where he forgot to tell you to update something. I don't think it would have been so bad if I did the thing in C++ instead of Nim. I'll get to why later...
All in all, I would actually recommend this one over the second just a little bit more. Some of the things in it could fly over your head, but there were next to no errors in the book (just one).
Book Series As A Whole
As I said before, I wish I had a copy of the first book before going into my course where I had to build a Ray Tracer. It covers many of the necessary basics plus some extra fun things.
All of the issues that I bumped into in the second one were quite jarring. I've sent a laundry list of them to Peter Shirley. He's been very responsive to all of my emails and has fixed issues with his books in the past. Expecting him to clean them up during the Thanksgiving-Christmas-Hanukkah-Kwanzaa-Festivus-New Years blitz (a.k.a. November & December) is not a fair demand, but he should eventually. Once these get fixed up I think it will be a much stronger series.
Except for the errors, the source was of a good quality. It was mostly clean, readable, and simple. The only thing that I didn't like was the organization of the code. I know you get what you pay for ($3) but it wasn't really that well structured. It made the software engineer in me hurt a little. The code was also provided as one big lump in a GitHub repo. Other tech books I've read have been nice enough to divide up the progress from each chapter in their own separate folder. This would have been good to do instead.
I'm a little saddened this didn't go over other things like the BRDF or a bit of ray marching. It would have been better to have more in the third book than only a Monte Carlo renderer. I also don't think the title of the last book is really accurate if you choose to do more Ray Tracing after reading it. This book series should not be treated as a replacement for a university course; I learned a lot more about ray tracing and computer graphics at school.
With these negatives, I think the positives out way them and make the series worth the money to pay for it.
What it was like doing this in Nim
There always seems to be a relevant XKCD for every situation. In the realm of compiled languages Nim really made me feel like I was flying again.
As I said before, I did this book in Nim as an excuse to learn the language better. I've made a few toys with Nim prior, but I felt working on a larger (iterative) project would force me better understand the language. At the end, I did learn a lot more..
Translating between C++ and Nim wasn't that difficult at all. The book's source wasn't complexly constructed in areas of OOP, and Nim's OOP functionality is still fairly basic, so there was almost a one to one correspondence with what I would have to write. When there was a C++ class
, I would typically turn that into a type CLASS_NAME = ref object of RootObj
. It would hit most of my needs but one time it came back to bite me in the butt. Looking up witch Nim proc
to use in place was something a pain, as Nim's documentation isn't the best at the moment.
Things always felt very fluid and fun for me. It felt a lot like I was writing Python code that was type checked. The operator overloading is also some the easiest I've seen in any language. And because of having to use stb_image.h
I got a taste of how to work with the foreign function interface. Heck, I even ended up doing a proper wrapper of the library.
So how that ref object of RootObj
got me... I would translate all of the C++ classes using this. That would create reference counted pointer to an custom object I defined. Upon object creation, which would be stored in dynamic memory. When I was first working on the Cornell Box I got this:
Yeah, that's pretty bizarre. That back box is off to the right (through the wall), yet it's shadow and diffuse reflections are on the room walls and floor. After pulling my hair out form running through the code I finally figured out that ref object of RootObj
was what perpetrated it (or how I used it), along with this snippet:
method hit*(ry: rotate_y, r: ray, t_min, t_max: float, rec: var hit_record): bool= # I thought this was copying the vec3 data, but it wasn't. It was copying the pointer... var origin = r.origin() direction = r.direction() # origin and direction are modified after this which caused the issue...
I wasn't creating a copy of the 3D vector, I was modifying the original vector… After that I changed that vector class over to a simple object
.
Another problem I had with Nim is that it doesn't yell at me as much as C++ does. When I was working on the last book, my renders were coming out like this:
"How the heck is that glass sphere turning into a black hole?" went through my mind. This also made me spend too much time chasing the errors down in the wrong places. Partially, this issue stemmed from Peter Shirley not reminding me in that last chapter to update the dielectric::scatter()
method. But when I changed the prototype for the base method material::scatter()
, Nim didn't yell at me to fix the child methods too. It just used the base method instead, which would return black. When you change a base method's prototype in C++ the compiler will remind you to change all the children too. For once, I wish I was being screamed at.
There is also some other odd behavior I want to look further into too. In the second book we built a BVH Tree hierarchy to store the scene info, as to make the ray collisions much faster than checking each object one by one. Storing the hittable objects in a sequential list was faster than searching the BVH Tree. It could be my implementation of a bounding volume hierarchy, but I'm sure it's functionally correct.
As for the performance of the Ray Tracer. It's not as fast as the C++ one it was ported from, though it is still pretty good. If I were to have written this in Python (what Nim resembles), I think the images would still be rendering well into my 80s. The port that I have is definitely not the most riced thing possible. There's probably a ton of other optimizations that can be made. But here are some comparisons:
Commit was: "fd77499840b4a93441b4c9d772258da85fecc265". Resolution was 1280x800. "ns," stands for number of Rays/Samples per pixel. All were done on a Desktop Intel i5 machine, single core w/ no threading. The Linux "time," utility was used to benchmark. I think the performance slowdown with book 2's Nim implementation has something to do with the BVH node. I'll be investigating it and hopefully fixing it.
Nim is still very young so I don't think it's fair to be overly critical, and I'm also very new to the language myself. I will continue to do more things in Nim as I really like it.
If you want to learn more about Nim here is the website and here is a good place to start. You can find the Nim Ray Tracer here (GitHub mirror). And if you're interested in the books, here are their Amazon pages:
Have you ever used any of Sean Barret's (a.k.a "nothings") stb libraries at all in a C/C++ program before? They are all really lovely. My favorite part of about them is that they all consist of a single header file. No messy linking commands at compile time, just #include
them wherever you want. Nothing could be simpler than that. I was a little surprised that no one had made a Nim friendly wrapper for stb_image
yet. So I made one myself. It can be found here, or on nimble as the stb_image
package.
If you're not familiar with stb_image
, it's a nice little bitmap loading utility. It supports many file formats (or at least the ones people care about,) such as PNG, JPEG, PSD, etc. The API is pretty clean. e.g.:
I designed the wrapper to be easy to use and make it seamless for translating between C and Nim. It uses Nim types (handling all those C conversions for you) and returns data as sequences. This is how that snippet above would look in Nim:
I also spent some time binding the stb_image_write
library too:
I also had some plans to bind stb_image_resize
but it looked like a lot of extra work and I thought it would be better to keep this wrapper right now to only image IO. Though if there is some demand for that to be bound I can look into it. Though I'd appreciate some help with it. The only things that haven't been wrapped are the callback functions and the ZLIB client. I have no intention of adding those things in myself, but I'm always open to pull requests. These are the limitations of the wrapper yet it should cover most of your use cases. Before using it I'd also recommend reading through the documentation at the top of stb_image.h
and stb_image_write.h
too, so you know what it can and cannot do.
As of right now the wrapper uses these versions from stb:
stb_image
: v2.13stb_image_write
: v1.02
They're hard coded into the *_header.nim
files (to make it easier on the user). If there is a version change it should be easy to swap out for yourself, but dropping me a line on the issue tracker so I can update the package would be cool.
Once again, you can find the repo here on GitLab, but I've got a mirror on GitHub too. Enjoy.
As I mentioned in the previous post, I've been playing around with the Nim language for a little less than a month now. So far I really like it and have used it for messing with computer graphics. I like to record how long things take to compute so I set out to look for a Timer of sorts. I was a little surprised to find out that it didn't have a built-in timing/benchmarking mechanism (like C# has with the Stopwatch class). There was a package made available by rbmz under the name of stopwatch
that did some very basic stuff for me, but I was still unsatisfied. So I decided to do a fork of it and made all of the changes that I wanted.
There were two main things that I changed. the clock
object was renamed to Stopwatch
, and the Stopwatch
can now record multiple laps. What I mean by "laps," is that you can now start and stop the Stopwatch
multiple times and it will remember those timings for you. Some other minor additions include methods to convert nanoseconds over to milli- and microseconds. To see everything that was added check the source code here, everything should be documented and easy to follow (there isn't much).
If you want to grab the package, it's up on nimble as stopwatch
. Yes, one of the maintainers was nice enough to let me hijack the original package name. Here are some code samples (ripped from the README) that show you how to use this package:
You can find the repo here. If you have any requests or find any bugs please tell me.
It's been a while since I've posted something. It's mainly because I've been busy for the past couple of weeks. I've had to put my C# Networking Tutorials series on hiatus for the time being. But I do have plans to finish it with about three more articles (they'll cover things like async).
In the meantime, I've been playing around with this language called "Nim." I first heard about it from /r/programming. It was popping up every so often so I decided to finally check it out about two or three weeks ago. So far, I've found it very pleasant to work in despite being fairly young. I've been reading through Peter Shirley's Raytracing Minibooks but writing the code in Nim instead of C++; it's been pretty good so far (I'll post about that on a later date).
You probably can guess that I really like graphics. So one of the first things I looked for were OpenGL examples. I had a lot of trouble trying to find a solid sample that showed you how to use shaders, so I made one myself. You can find a link to it here, but the source for it is also included in this post. I've tried to keep things as simple as possible, so there is duplicate code (e.g. the shader construction code), but it makes it easier to follow. You can compile the program with nim c nim_opengl_shader_example.nim
. I built this on Linux so I also had to add in a It also uses this GLFW binding, though it should be simple to change it out for SDL2. It should show a colourful rotating hexagon. You can change it's speed by passing in a non-negative float at the command line, e.g. "0.5," or "10". Pass in "0" to make it not rotate. If you want anti-aliasing, add "aa" to the command line arguments. Here is what it looks like:{.passL: "-lGL".}
call at the beginning. Change it for the platform of your choice.
Edit: The official opengl
package handles the linking for you. If you're using a different OpenGL binding (like those from nimios,) you'll need to add the passL
in manually for your OS.
And the source:
Before I begin, you can find the source for Blit over here.
I want to talk a little bit about a project I worked on every day from July 2014 till the end of August 2015. You may have seen a few entries about it back on earlier posts; that project was something I called “Blit.” If you’re wondering what Blit was, it was my attempt at trying to make an Animation focused art program. It was pretty ambitious for someone like me at the time.
There were two main reasons why I started to work on it:
- Back when I was an undergraduate, I was part of a student group were we had to do these things called “major projects,” each year if we wanted to retain membership. They usually are of a technical nature (programming & engineering). This is where my initial drive came from
- I’ve never worked on a “large,” or “longterm,” project before. Everything else I’ve done up till that point were small things like class assignments, course projects, or tasks for my internships. I had friends who had worked on their own projects for two or three years straight and made some really cool stuff. I really wanted to be able to tell others (mainly prospective employers) “Yeah, I’ve been working on this thing for over year. Want to take a look?” Other than just “having something,” I also wanted to learn how to manage a larger and lengthier project.
The “major project,” was something that was pretty easy to fulfill. But for the second I did something kind of stupid, but worked well for me. I told myself “Alright, I’m going to work on a project that will have a 365 day long GitHub streak.” In reality, git streaks are a silly thing to track progress. I was working on Blit in a private repo, so the outside world would not see my streak at all. I feel bad for the people who have the need to maintain one. For me it was a reminder to build on Blit each day. It worked.
Whether it be programming, logging issues, source code cleanup, design & planing, writing documentation, etc., I had to minimum goal of one meaningful commit per day. Normally I would spend an hour on Blit per day (more on the weekends). I would keep at it until the kitchen timer to my side beeped. Somehow that little thing was able to keep me focused for a straight hour.
So What Is (or Was) Blit?
I’ve always been someone who’s liked art and programming. Especially combining the two. One of my favorite genres is pixel art, or sprites as they are also known. I’ve dabbled in making a few other art programs before, but nothing like this.
Originally Blit supposed to be only a sprite animation tool that had a modern look and feel, but my ideas for it grew greater (*sigh* feature creep). There are many other sprinting tools out there like GrafX2, Aseprite, (and other 2D animation programs like TVPaint). I’m not saying that it’s wrong that they make their own GUI toolkit, but it feels kind of odd. I really wanted to bring these types of programs out of the days of the Amiga. After doing some initial research, I settled on using Qt. Here are my reasons:
- It’s cross platform. I work on a Linux system, but I want my Windows and OS X friends to be able to use what I make
- It’s a C++ library; my native tongue. But there exists bindings to other languages, such as Python
- There’s a lot more to Qt than just widgets. It really is a fully featured desktop application framework
- It has a massive community around it and it’s very well documented. So if I ever ran into trouble I’d be able to find some help
Before I move any further, you might be wondering where the name “Blit.” came from. Since it had a focus on 2D graphics, the name came from the “Bit blit,” algorithm. I used to do a lot of programming with libSDL, so the function SDL_BlitSurface() has been burned into my brain. I thought it would be a cute name too.
I also wanted to keep more of a “traditional animation,” approach to Blit. Instead of drawing on images there were “Cels.” Layers were called “Planes.” Instead of a Dope Sheets I had “Exposure Sheets.” I didn’t call it “onion skinning,” but “turning on the Light Table.”
Starting Out
As mentioned before, I was focused on sprite animation (originally). I wanted to keep things as easy as possible. While I did consider using Qt’s native C++ libraries, I decided on making the program in Python with PyQt. Scripting languages are typically much faster to write code for. I felt as if I would be able to get more done in less time. I didn’t think that there would be too many computationally intensive procedures to worry about. In the event that I needed some performance boost, I could always write a C/C++ extension for Python.
After choosing my tools, the first thing I did was draft some design documents. These included a user interface mockup and an initial file format structure. I started to log tickets on the GitHub issue tracker. I had an miniature road map to start from. Within a month and a half, I was able to load up one of my files into Blit, do a little simple Cel & Frame editing, and then save it. You couldn’t do too much with it, but I thought it was a good starting point.
During my initial research of Qt, I discovered something called the “Graphics View Framework.” There were a lot of widgets that I had to custom make such as the Timeline or the Canvas; it made my life much easier. It really is one of the nice features of Qt. If you’re making a heavily graphical application you should take a look into it.
Despite being able to get a basic animation loaded, edited and played back, I was starting to run into some issues with the development language: Python. I had issues with things like circular imports and nested imports (python files imported from many directories deep). I don’t want to go into the details of how they were affecting me and the project, but all I can say is that they were driving me up the wall. So I devised a solution: Switch to C++.
Now, switching development languages is not always something that’s advised. But at the point where I was, it was feasible to do and would possibly have a better impact on my project. Nested imports are a non-issue in C++ and the circular imports are fixed with simple include guards. On top of that, I wouldn’t have to use PyQt’s bindings anymore and Python would not be a performance bottleneck since it would be gone. Working at my usual hour a day pace, it took somewhere between two and three weeks to port everything I had to C++. I wasn’t happy about losing that time to work on new features, but I think it was a better choice in the end.
I didn’t entirely ditch Python & PyQt. If I needed to prototype a widget, I would use those tools. It helped to realize ideas pretty quickly, then later I would integrate it into the C++ source.
Feature Creep, “Future Planning,” and Broadening Horizons
In the first couple of months that I was working on Blit, more ideas started to pour into my head of what it could or should be able to do. We all know what this is; Feature Creep. Whenever I though of a cool new thing I wanted to add, I usually weighed the cost of adding it in within my current milestone, the next, or burring it in the issue tracker. This is where I developed the “Future Planning,” tag. If something popped into my head, almost 95% of the time I would not mark it under any milestone and put it under that tag. It was a good way for me to tell myself “Alright, I think this would be a good thing, but I need to focus on other stuff right now.” This worked actually pretty well for me. At all times, the most populous tag in my issue tracker was the “Future Planning,” one.
Around 100 days into the project, I felt like I had a good direction that I was going in. I was nearing the end of my (second) internship and I would be left with nearly two months before classes would begin again. With all of this free time, I set myself the goal of “Be able to draw a bouncing ball animation and export it as a Spritesheet,” before Christmas hit. I achieved that.
By this time you could move Cels around on the Frames, move the Frames on the Timeline, and adjust their hold values. I think I focused more on the staging of objects rather than editing them. To work on this shortcoming, I decided to start work on a Tool interface. I had the idea that editing tools should be plugins and people should be able to write their own; a very common idea in art applications. Instead of only “put pixel,” and “erase pixel,” I added line/shape drawing, filling, and was working on a soft brush tool.
When I got back to school I fulfilled that first goal of passing it as a “major project,” in my student group. It was well received for what it was at the time, a very simple pixel art animation tool. Though, I started to think more beyond simple spriting. Not only do I consider myself a fan of Animation, but someone who really enjoys making it. I started to ponder “What if Blit could be used for all sorts of 2D animation, not just pixel art?”
I didn’t think it would be too hard to add a camera hookup to the program (something that I’ve done with Qt before), so Blit could be turned into an application to do pencil tests, capture paper drawn animation, or even stop motion. My rule became “If it’s Bitmap based, Blit should be able to do something with it.” I also thought that there wasn’t a good free (both as in beer and speech) software solution to 2D computer animation. TVPaint, Dragonframe, and FlipBook were used a lot in the animation department. I can understand the expensive cost of them for professionals and that it’s niche software, but it really sucks for students who want to learn how to animate, but already were paying a small fortune for their college tuition.
To make Blit more generic, it had to undergo something I called dubbed “The Grand Refactoring.” The whole animation module was like this: an Animation owns an XSheet, which owns a list of Frames, where each Frame owns a list of Cels. No reuse. This was good to get started with, but pretty bad since in the real world animation is reused all of the damn time. So I devised up this system instead:
As it would force me to fix up almost every single thing in the program that touched the Animation module (including the file format), I set this to be its own “half milestone.” It took about a month and a half to complete. It really sucked not being to add any new features for that time; only endless refactoring. At the end of that, all the logic was in the code to be able stage the same Cel across multiple Frames, or instance a Frame multiple times in the Timeline. Though, because I was focused on fixing things up, I didn’t add in an interface where the user could actually reuse Cels and Frames. If they wanted to, they would have to edit the sequence.xml
file. So it was there, it worked, but wasn’t usable by the layman.
While taking classes and juggling other (smaller) projects it sometimes became difficult to make meaningful contributions to Blit. I tried to stick to my “one hour a day rule,” but that became hard. Also, refactoring isn’t fun. You don’t get to see new features, you’re restructuring stuff that already exist. You might also break things and then have to spend time fixing them. It’s hard to stay motivated when nothing is new or exciting.
My brain was fried after writing code for my class assignments. I found that (better) documenting the source code, reviewing issue tracker tickets, and revisiting design documents wasn’t too hard. If I recall correctly there was a two week stint were that was all that I did.
Despite all these speed bumps, I got to do something really cool with Blit at the end of the year. If you’ve read some of my older blog posts, you may have seen this thing I made called MEGA_MATRIX. For those of you who don’t know what it was, it is a 24x24 LED Dot Matrix display. I actually developed it in tandem with Blit during the early days of the application. Anyways, at the end of the year my college hosts what is essentially a campus wide show and tell day. I thought it would be neat If I could let people doodle animations in Blit, then upload them onto MEGA_MATRIX. Turns out it was. I made a special fork of Blit called “The MEGA_MATRIX Edition,” where I only let users draw in two colors (red and black), preview their animations, and then upload them to an Arduino to drive the display. One of my friends said it was his favorite thing at the festival because “[I] practically made a hardware implementation of Mario Paint.”
Altered Scope, One Full Year, and the End of Development
At the beginning of 2015’s summer, I was off to my next internship. During the day I would write C# code for a rendering infrastructure. After work I would exercise, watch some TV, play a few video games, but also work on Blit, for well, at least an hour a day.
After “The Grand Refactoring,” and the MEGA_MATRIX Edition I was able to get a few more features out of the way. Changing the Canvas’ backdrop color, pixel grid, selective playback, a color picker tool and more. One of my favorite additions was onion skinning (I called it the Light Table). Thanks to the newly redesigned Animation module, it actually made it pretty easy to implement.
Then sometime in mid July I hit my second goal; hold onto a GitHub streak for one year straight.
The code for Blit was starting to get really huge at this point. I still was able to manage it myself, but it started to become a bit of a chore too. I also spent a lot more time refactoring and fixing existing code rather than working on new features. I feel like I lost a little of my drive then. As my two initial goals were achieved I could have stopped here. But for some reason, I didn’t want to. I kept on pushing.
My internship came to an end, I had a week at home, and then I was off to another internship. All of the previous places were I interned let me work on outside projects if I wanted to. As long as it wasn’t during work time, with work equipment, or a competing product I was free to do what I want. This time around, my employer asked me to stop working on outside projects all together.
While I felt that work on Blit was starting to go stale I still didn’t feel to happy about having to quit development. I could have worked on it in secret, but that didn’t feel right to me. So, right before leaving for the first day of work I made an early morning final commit to the Blit repo. It was kind of poetic that my ending streak was exactly 400 days long.
In the month that followed, I was bummed that I wasn’t able to add an interface for the reusable Cels/Frames, the Brush and Resize tools were still unfinished, no work on multiple planes was ever done (Cel layering existed though), but worst of all, I feel that it sucked when trying to make sprites; the original goal of Blit. I still had ideas popping into my head. Such as using FFmpeg to export animations as animated GIFs. All I could do is just scribble them down on some note paper and file it away for when I was done with my current internship.
So four months down the road I was done with my final practicum. Did I start back working on Blit? No. The previous month was pretty turbulent for me, as well as the next couple. It was my last semester at college and I was more focused on graduating. I still had ideas coming into my head for Blit, but they would go into the issue tracker instead of the code. I felt that I was way too out of it to startup work back on Blit. I also realized how much of a behemoth the source had become. Thus I decided to put it on hiatus indefinitely.
Final Lookback and the Future
Almost everything I’ve done is a learning project for me. Some of I learnt very little from, others a lot. Working on Blit taught me so much more about Qt than I ever wanted to know. Hell, in the process of developing Blit I spotted a minor bug in Qt and was able to submit a(n) (accepted) patch to the project. That was one of the more rewarding moments, as I’ve never contributed to a major open source project before.
But the main thing I gained from Blit was learning how to manage/handle/organize a larger project. I was never involved with issue tracking, documentation, and design so much before. As stupid of an idea it was to maintain a year long GitHub streak, it somehow worked for me. It was fun to show off the streak to my friends, it was really there for me to motive myself.
While building Blit, one the things I always wanted to do was work on it with other people. Though, I kept it in a private repo I always had the intention of releasing the source code when I was done with some of the core features. While many of my friends thought it was interesting, I couldn’t find anyone else who wanted to work on it. I always made sure to keep good documentation of the design and source code for this reason. I really wish I had others to help me with this, not only so that I could have had Blit in a much further state, but also so I could learn how to collaborate with others better too.
It’s now been a year since I last touched Blit. At the beginning of this past Summer there was a monkey on my back to figure out “the future of Blit.” I know I wanted to release the source for it, but I’m not sure where I want to go with it. In the past year Dwango released OpenToonz and Krita has added some animation tools. Both of these have much better drawing capabilities. It’s hard to compete.
I have a small desire to restart work on Blit. For example, adding a camera connection to shoot paper drawn animation or working on some FFmpeg exporting. But I have other priorities right now. If I had to do it again, I would want to write Blit in C# instead of C++. I’ve grown to love C# a lot in the past year and development in it is much easier than C++, and performance is still pretty good. I really hope that QtSharp can get off of the ground sometime soon.
If you want to check out the source for Blit, you can find it over here: gitlab.com/define-private-public/blit. If you want to see some of my fabulous source documention, it’s at: https://blit.gitlab.io/SourceDocs/. And if in the slightest chance that you’re interested in working on Blit, please contact me.
To end with, here are some stats:
- 97 source code files
- 8,175 lines of code (95% C++)
- 400 days of contributions
- 364 issues tracked
- 3,151 commits
- 91,528 additions, 65,617 deletions
- An unknown amount of users
- and 1 developer (me)